Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Adv Healthc Mater ; : e2300673, 2023 May 03.
Article in English | MEDLINE | ID: covidwho-2320621

ABSTRACT

The viral spike (S) protein on the surface of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) binds to angiotensin-converting enzyme 2 (ACE2) receptors on the host cells, facilitating its entry and infection. Here, functionalized nanofibers targeting the S protein with peptide sequences of IRQFFKK, WVHFYHK and NSGGSVH, which are screened from a high-throughput one-bead one-compound screening strategy, are designed and prepared. The flexible nanofibers support multiple binding sites and efficiently entangle SARS-CoV-2, forming a nanofibrous network that blocks the interaction between the S protein of SARS-CoV-2 and the ACE2 on host cells, and efficiently reduce the invasiveness of SARS-CoV-2. In summary, nanofibers entangling represents a smart nanomedicine for the prevention of SARS-CoV-2.

2.
Nat Commun ; 13(1): 6952, 2022 Nov 14.
Article in English | MEDLINE | ID: covidwho-2119472

ABSTRACT

Data on safety and immunity elicited by a third booster dose of inactivated COVID-19 vaccine in children and adolescents are scarce. Here we conducted a study based on a double-blind, randomised, placebo-controlled phase 2 clinical trial (NCT04551547) to assess the safety and immunogenicity of a third dose of CoronaVac. In this study, 384 participants in the vaccine group were assigned to two cohorts. One received the third dose at a 10-months interval (cohort 1) and the other one at a 12-months interval (cohort 2). The primary endpoint is safety and immunogenicity following a third dose of CoronaVac. The secondary endpoint is antibody persistence following the primary two-dose schedule. Severities of local and systemic adverse reactions reported within 28 days after dose 3 were mild and moderate in both cohorts. A third dose of CoronaVac increased GMTs to 681.0 (95%CI: 545.2-850.7) in cohort 1 and 745.2 (95%CI: 577.0-962.3) in cohort 2. Seropositivity rates against the prototype were 100% on day 28 after dose 3. Seropositivity rates against the Omicron variant were 90.6% (cohort 1) and 91.5% (cohort 2). A homologous booster dose of CoronaVac is safe and induces a significant neutralising antibody levels increase in children and adolescents.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , Adolescent , Child , SARS-CoV-2 , COVID-19/prevention & control , Antibodies, Neutralizing , Double-Blind Method , Antibodies, Viral
3.
Front Public Health ; 10: 963667, 2022.
Article in English | MEDLINE | ID: covidwho-2043533

ABSTRACT

Background: This umbrella review aims to consolidate evidence from systematic reviews and meta-analyses investigating the impact of the coronavirus disease-2019 (COVID-19) on kidney health, and the associations between kidney diseases and clinical outcomes in COVID-19 patients. Methods: Five databases, namely, EMBASE, PubMed, Web of Science, the Cochrane Database of Systematic Reviews and Ovid Medline, were searched for meta-analyses and systematic reviews from January 1, 2020 to June 2, 2022. Two reviewers independently selected reviews, identified reviews for inclusion and extracted data. Disagreements were resolved by group discussions. Two reviewers independently assessed the methodological quality of all included reviews using ROBIS tool. A narrative synthesis was conducted. The characteristics and major findings of the included reviews are presented using tables and forest plots. The included meta-analyses were updated when necessary. The review protocol was prospectively registered in PROSPERO (CRD42021266300). Results: A total of 103 reviews were identified. Using ROBIS, 30 reviews were rated as low risk of bias. Data from these 30 reviews were included in the narrative synthesis. Ten meta-analyses were updated by incorporating 119 newly available cohort studies. Hospitalized COVID-19 patients had a notable acute kidney injury (AKI) incidence of 27.17%. AKI was significantly associated with mortality (pooled OR: 5.24) and severe conditions in COVID-19 patients (OR: 14.94). The pooled prevalence of CKD in COVID-19 patients was 5.7%. Pre-existing CKD was associated with a higher risk of death (pooled OR: 2.21) and disease severity (pooled OR: 1.87). Kidney transplant recipients were susceptible to SARS-CoV-2 infection (incidence: 23 per 10,000 person-weeks) with a pooled mortality of 18%. Conclusion: Kidney disease such as CKD or recipients of kidney transplants were at increased risk of contracting COVID-19. Persons with COVID-19 also had a notable AKI incidence. AKI, the need for RRT, pre-existing CKD and a history of kidney transplantation are associated with adverse outcomes in COVID-19. Systematic review registration: www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021266300, identifier: CRD42021266300.


Subject(s)
Acute Kidney Injury , COVID-19 , Renal Insufficiency, Chronic , Acute Kidney Injury/epidemiology , COVID-19/epidemiology , Humans , Kidney , Pandemics , Renal Insufficiency, Chronic/epidemiology , SARS-CoV-2 , Systematic Reviews as Topic
4.
Nat Nanotechnol ; 17(9): 993-1003, 2022 09.
Article in English | MEDLINE | ID: covidwho-2000903

ABSTRACT

The global emergency caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic can only be solved with effective and widespread preventive and therapeutic strategies, and both are still insufficient. Here, we describe an ultrathin two-dimensional CuInP2S6 (CIPS) nanosheet as a new agent against SARS-CoV-2 infection. CIPS exhibits an extremely high and selective binding capacity (dissociation constant (KD) < 1 pM) for the receptor binding domain of the spike protein of wild-type SARS-CoV-2 and its variants of concern, including Delta and Omicron, inhibiting virus entry and infection in angiotensin converting enzyme 2 (ACE2)-bearing cells, human airway epithelial organoids and human ACE2-transgenic mice. On association with CIPS, the virus is quickly phagocytosed and eliminated by macrophages, suggesting that CIPS could be successfully used to capture and facilitate virus elimination by the host. Thus, we propose CIPS as a promising nanodrug for future safe and effective anti-SARS-CoV-2 therapy, and as a decontamination agent and surface-coating material to reduce SARS-CoV-2 infectivity.


Subject(s)
COVID-19 Drug Treatment , Nanostructures , Angiotensin-Converting Enzyme 2 , Animals , Humans , Mice , Nanostructures/therapeutic use , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
5.
Nat Commun ; 13(1): 3100, 2022 06 03.
Article in English | MEDLINE | ID: covidwho-1931403

ABSTRACT

Determining the duration of immunity induced by booster doses of CoronaVac is crucial for informing recommendations for booster regimens and adjusting immunization strategies. In two single-centre, double-blind, randomised, placebo-controlled phase 2 clinical trials, immunogenicity and safety of four immunization regimens are assessed in adults aged 18 to 59 years and one immunization regimen in adults aged 60 years and older, respectively. Serious adverse events occurring within 6 months after booster doses are recorded as pre-specified secondary endpoints, geometric mean titres (GMTs) of neutralising antibodies one year after the 3-dose schedule immunization and 6 months after the booster doses are assessed as pre-specified exploratory endpoints, GMT fold-decreases in neutralization titres are assessed as post-hoc analyses. Neutralising antibody titres decline approximately 4-fold and 2.5-fold from day 28 to day 180 after third doses in adults aged 18-59 years of age and in adults aged 60 years and older, respectively. No safety concerns are identified during the follow-up period. There are increases in the magnitude and duration of humoral response with homologous booster doses of CoronaVac given 8 months after a primary two-dose immunization series, which could prolong protection and contribute to building our wall of population immunity. Trial number: NCT04352608 and NCT04383574.


Subject(s)
COVID-19 , SARS-CoV-2 , Adolescent , Adult , Aged , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Follow-Up Studies , Humans , Middle Aged , Young Adult
7.
Lancet Infect Dis ; 22(4): 483-495, 2022 04.
Article in English | MEDLINE | ID: covidwho-1839434

ABSTRACT

BACKGROUND: Large-scale vaccination against COVID-19 is being implemented in many countries with CoronaVac, an inactivated vaccine. We aimed to assess the immune persistence of a two-dose schedule of CoronaVac, and the immunogenicity and safety of a third dose of CoronaVac, in healthy adults aged 18 years and older. METHODS: In the first of two single-centre, double-blind, randomised, placebo-controlled phase 2 clinical trials, adults aged 18-59 years in Jiangsu, China, were initially allocated (1:1) into two vaccination schedule cohorts: a day 0 and day 14 vaccination cohort (cohort 1) and a day 0 and day 28 vaccination cohort (cohort 2); each cohort was randomly assigned (2:2:1) to either a 3 µg dose or 6 µg dose of CoronaVac or a placebo group. Following a protocol amendment on Dec 25, 2020, half of the participants in each cohort were allocated to receive an additional dose 28 days (window period 30 days) after the second dose, and the other half were allocated to receive a third dose 6 months (window period 60 days) after the second dose. In the other phase 2 trial, in Hebei, China, participants aged 60 years and older were assigned sequentially to receive three injections of either 1·5 µg, 3 µg, or 6 µg of vaccine or placebo, administered 28 days apart for the first two doses and 6 months (window period 90 days) apart for doses two and three. The main outcomes of the study were geometric mean titres (GMTs), geometric mean increases (GMIs), and seropositivity of neutralising antibody to SARS-CoV-2 (virus strain SARS-CoV-2/human/CHN/CN1/2020, GenBank accession number MT407649.1), as analysed in the per-protocol population (all participants who completed their assigned third dose). Our reporting is focused on the 3 µg groups, since 3 µg is the licensed formulation. The trials are registered with ClinicalTrials.gov, NCT04352608 and NCT04383574. FINDINGS: 540 (90%) of 600 participants aged 18-59 years were eligible to receive a third dose, of whom 269 (50%) received the primary third dose 2 months after the second dose (cohorts 1a-14d-2m and 2a-28d-2m) and 271 (50%) received a booster dose 8 months after the second dose (cohorts 1b-14d-8m and 2b-28d-8m). In the 3 µg group, neutralising antibody titres induced by the first two doses declined after 6 months to near or below the seropositive cutoff (GMT of 8) for cohort 1b-14d-8m (n=53; GMT 3·9 [95% CI 3·1-5·0]) and for cohort 2b-28d-8m (n=49; 6·8 [5·2-8·8]). When a booster dose was given 8 months after a second dose, GMTs assessed 14 days later increased to 137·9 (95% CI 99·9-190·4) for cohort 1b-14d-8m and 143·1 (110·8-184·7) 28 days later for cohort 2b-28d-8m. GMTs moderately increased following a primary third dose, from 21·8 (95% CI 17·3-27·6) on day 28 after the second dose to 45·8 (35·7-58·9) on day 28 after the third dose in cohort 1a-14d-2m (n=54), and from 38·1 (28·4-51·1) to 49·7 (39·9-61·9) in cohort 2a-28d-2m (n=53). GMTs had decayed to near the positive threshold by 6 months after the third dose: GMT 9·2 (95% CI 7·1-12·0) in cohort 1a-14d-2m and 10·0 (7·3-13·7) in cohort 2a-28d-2m. Similarly, in adults aged 60 years and older who received booster doses (303 [87%] of 350 participants were eligible to receive a third dose), neutralising antibody titres had declined to near or below the seropositive threshold by 6 months after the primary two-dose series. A third dose given 8 months after the second dose significantly increased neutralising antibody concentrations: GMTs increased from 42·9 (95% CI 31·0-59·4) on day 28 after the second dose to 158·5 (96·6-259·2) on day 28 following the third dose (n=29). All adverse reactions reported within 28 days after a third dose were of grade 1 or 2 severity in all vaccination cohorts. There were three serious adverse events (2%) reported by the 150 participants in cohort 1a-14d-2m, four (3%) by 150 participants from cohort 1b-14d-8m, one (1%) by 150 participants in each of cohorts 2a-28d-2m and 2b-28d-8m, and 24 (7%) by 349 participants from cohort 3-28d-8m. INTERPRETATION: A third dose of CoronaVac in adults administered 8 months after a second dose effectively recalled specific immune responses to SARS-CoV-2, which had declined substantially 6 months after two doses of CoronaVac, resulting in a remarkable increase in the concentration of antibodies and indicating that a two-dose schedule generates good immune memory, and a primary third dose given 2 months after the second dose induced slightly higher antibody titres than the primary two doses. FUNDING: National Key Research and Development Program, Beijing Science and Technology Program, and Key Program of the National Natural Science Foundation of China. TRANSLATION: For the Mandarin translation of the abstract see Supplementary Materials section.


Subject(s)
COVID-19 , Adolescent , Adult , Aged , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Double-Blind Method , Humans , Immunogenicity, Vaccine , Middle Aged , SARS-CoV-2 , Young Adult
8.
Lancet Infect Dis ; 21(12): 1645-1653, 2021 12.
Article in English | MEDLINE | ID: covidwho-1284631

ABSTRACT

BACKGROUND: A vaccine against SARS-CoV-2 for children and adolescents will play an important role in curbing the COVID-19 pandemic. Here we aimed to assess the safety, tolerability, and immunogenicity of a candidate COVID-19 vaccine, CoronaVac, containing inactivated SARS-CoV-2, in children and adolescents aged 3-17 years. METHODS: We did a double-blind, randomised, controlled, phase 1/2 clinical trial of CoronaVac in healthy children and adolescents aged 3-17 years old at Hebei Provincial Center for Disease Control and Prevention in Zanhuang (Hebei, China). Individuals with SARS-CoV-2 exposure or infection history were excluded. Vaccine (in 0·5 mL aluminum hydroxide adjuvant) or aluminum hydroxide only (alum only, control) was given by intramuscular injection in two doses (day 0 and day 28). We did a phase 1 trial in 72 participants with an age de-escalation in three groups and dose-escalation in two blocks (1·5 µg or 3·0 µg per injection). Within each block, participants were randomly assigned (3:1) by means of block randomisation to receive CoronaVac or alum only. In phase 2, participants were randomly assigned (2:2:1) by means of block randomisation to receive either CoronaVac at 1·5 µg or 3·0 µg per dose, or alum only. All participants, investigators, and laboratory staff were masked to group allocation. The primary safety endpoint was adverse reactions within 28 days after each injection in all participants who received at least one dose. The primary immunogenicity endpoint assessed in the per-protocol population was seroconversion rate of neutralising antibody to live SARS-CoV-2 at 28 days after the second injection. This study is ongoing and is registered with ClinicalTrials.gov, NCT04551547. FINDINGS: Between Oct 31, 2020, and Dec 2, 2020, 72 participants were enrolled in phase 1, and between Dec 12, 2020, and Dec 30, 2020, 480 participants were enrolled in phase 2. 550 participants received at least one dose of vaccine or alum only (n=71 for phase 1 and n=479 for phase 2; safety population). In the combined safety profile of phase 1 and phase 2, any adverse reactions within 28 days after injection occurred in 56 (26%) of 219 participants in the 1·5 µg group, 63 (29%) of 217 in the 3·0 µg group, and 27 (24%) of 114 in the alum-only group, without significant difference (p=0·55). Most adverse reactions were mild and moderate in severity. Injection site pain was the most frequently reported event (73 [13%] of 550 participants), occurring in 36 (16%) of 219 participants in the 1·5 µg group, 35 (16%) of 217 in the 3·0 µg group, and two (2%) in the alum-only group. As of June 12, 2021, only one serious adverse event of pneumonia has been reported in the alum-only group, which was considered unrelated to vaccination. In phase 1, seroconversion of neutralising antibody after the second dose was observed in 27 of 27 participants (100·0% [95% CI 87·2-100·0]) in the 1·5 µg group and 26 of 26 participants (100·0% [86·8-100·0]) in the 3·0 µg group, with the geometric mean titres of 55·0 (95% CI 38·9-77·9) and 117·4 (87·8-157·0). In phase 2, seroconversion was seen in 180 of 186 participants (96·8% [93·1-98·8]) in the 1·5 µg group and 180 of 180 participants (100·0% [98·0-100·0]) in the 3·0 µg group, with the geometric mean titres of 86·4 (73·9-101·0) and 142·2 (124·7-162·1). There were no detectable antibody responses in the alum-only groups. INTERPRETATION: CoronaVac was well tolerated and safe and induced humoral responses in children and adolescents aged 3-17 years. Neutralising antibody titres induced by the 3·0 µg dose were higher than those of the 1·5 µg dose. The results support the use of 3·0 µg dose with a two-immunisation schedule for further studies in children and adolescents. FUNDING: The Chinese National Key Research and Development Program and the Beijing Science and Technology Program.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Vaccines, Inactivated/immunology , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/adverse effects , Adolescent , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/immunology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/adverse effects , Child , Child, Preschool , China , Dose-Response Relationship, Immunologic , Double-Blind Method , Female , Humans , Immunization , Immunogenicity, Vaccine , Injections, Intramuscular , Male , Vaccines, Inactivated/administration & dosage , Vaccines, Inactivated/adverse effects
9.
Nano Today ; 392021 Aug.
Article in English | MEDLINE | ID: covidwho-1230685

ABSTRACT

Nanotoxicology and nanomedicine are two sub-disciplines of nanotechnology focusing on the phenomena, mechanisms, and engineering at the nano-bio interface. For the better part of the past three decades, these two disciplines have been largely developing independently of each other. Yet recent breakthroughs in microbiome research and the current COVID-19 pandemic demonstrate that holistic approaches are crucial for solving grand challenges in global health. Here we show the Yin and Yang relationship between the two fields by highlighting their shared goals of making safer nanomaterials, improved cellular and organism models, as well as advanced methodologies. We focus on the transferable knowledge between the two fields as nanotoxicological research is moving from pristine to functional nanomaterials, while inorganic nanomaterials - the main subjects of nanotoxicology - have become an emerging source for the development of nanomedicines. We call for a close partnership between the two fields in the new decade, to harness the full potential of nanotechnology for benefiting human health and environmental safety.

10.
Lancet Infect Dis ; 21(6): 803-812, 2021 06.
Article in English | MEDLINE | ID: covidwho-1062675

ABSTRACT

BACKGROUND: A vaccine against COVID-19 is urgently needed for older adults, in whom morbidity and mortality due to the disease are increased. We aimed to assess the safety, tolerability, and immunogenicity of a candidate COVID-19 vaccine, CoronaVac, containing inactivated SARS-CoV-2, in adults aged 60 years and older. METHODS: We did a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial of CoronaVac in healthy adults aged 60 years and older in Renqiu (Hebei, China). Vaccine or placebo was given by intramuscular injection in two doses (days 0 and 28). Phase 1 comprised a dose-escalation study, in which participants were allocated to two blocks: block 1 (3 µg inactivated virus in 0·5 mL of aluminium hydroxide solution per injection) and block 2 (6 µg per injection). Within each block, participants were randomly assigned (2:1) using block randomisation to receive CoronaVac or placebo (aluminium hydroxide solution only). In phase 2, participants were randomly assigned (2:2:2:1) using block randomisation to receive either CoronaVac at 1·5 µg, 3 µg, or 6 µg per dose, or placebo. All participants, investigators, and laboratory staff were masked to treatment allocation. The primary safety endpoint was adverse reactions within 28 days after each injection in all participants who received at least one dose. The primary immunogenicity endpoint was seroconversion rate at 28 days after the second injection (which was assessed in all participants who had received the two doses of vaccine according to their random assignment, had antibody results available, and did not violate the trial protocol). Seroconversion was defined as a change from seronegative at baseline to seropositive for neutralising antibodies to live SARS-CoV-2 (positive cutoff titre 1/8), or a four-fold titre increase if the participant was seropositive at baseline. This study is ongoing and is registered with ClinicalTrials.gov (NCT04383574). FINDINGS: Between May 22 and June 1, 2020, 72 participants (24 in each intervention group and 24 in the placebo group; mean age 65·8 years [SD 4·8]) were enrolled in phase 1, and between June 12 and June 15, 2020, 350 participants were enrolled in phase 2 (100 in each intervention group and 50 in the placebo group; mean age 66·6 years [SD 4·7] in 349 participants). In the safety populations from both phases, any adverse reaction within 28 days after injection occurred in 20 (20%) of 100 participants in the 1·5 µg group, 25 (20%) of 125 in the 3 µg group, 27 (22%) of 123 in the 6 µg group, and 15 (21%) of 73 in the placebo group. All adverse reactions were mild or moderate in severity and injection site pain (39 [9%] of 421 participants) was the most frequently reported event. As of Aug 28, 2020, eight serious adverse events, considered unrelated to vaccination, have been reported by seven (2%) participants. In phase 1, seroconversion after the second dose was observed in 24 of 24 participants (100·0% [95% CI 85·8-100·0]) in the 3 µg group and 22 of 23 (95·7% [78·1-99·9]) in the 6 µg group. In phase 2, seroconversion was seen in 88 of 97 participants in the 1·5 µg group (90·7% [83·1-95·7]), 96 of 98 in the 3 µg group (98·0% [92·8-99·8]), and 97 of 98 (99·0% [94·5-100·0]) in the 6 µg group. There were no detectable antibody responses in the placebo groups. INTERPRETATION: CoronaVac is safe and well tolerated in older adults. Neutralising antibody titres induced by the 3 µg dose were similar to those of the 6 µg dose, and higher than those of the 1·5 µg dose, supporting the use of the 3 µg dose CoronaVac in phase 3 trials to assess protection against COVID-19. FUNDING: Chinese National Key Research and Development Program and Beijing Science and Technology Program.


Subject(s)
COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Vaccines, Inactivated/immunology , Aged , Antibodies, Neutralizing , Antibodies, Viral , Antibody Formation , China , Double-Blind Method , Female , Humans , Immunogenicity, Vaccine , Male , Middle Aged , SARS-CoV-2 , Seroconversion , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL